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Trapping of Random Walks on the Line 
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Several features of the trapping of random walks on a one-dimensional lattice 
are analyzed. The results of this investigation are as follows: (1) The correction 
term to the known asymptotic form for the survival probability to n steps is 
0((~2n)-1/3), where 2 = - l n ( 1 - c ) ,  and c is the trap concentration. (2) The 
short time form for the survival probability is found to be exp[-a(c)n~/2], 
where a(e) is given in Eq. (21). (3) The mean-square displacement of a 
surviving random walker is found to go like n 2/3 for large n. (4) When the 
distribution of trap-free regions is changed so that very large regions are much 
rarer than for ideally random trap placement the asymptotic survival probability 
changes its dependence on n. One such model is studied. 
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The subject o f  the mot ion of  r andom walkers on a latt ice with randomly  
placed traps has engaged the at tention of  many  invest igators recently. Many  
analyses of  this problem are based on simulat ions,  others rely on bounds or 
approximate  arguments,  and there are a very few r igorous results, mainly  for 
the expected survival after a r andom walk of  n steps. Al l  of  the r igorous 
results are asymptot ic  in nature,  the most complete  analysis  of  survival 
fraction being that  of  Donsker  and Varadhan.  (~) Several authors have studied 
the kinetics of  one-dimensional  r andom walks (2-s) since when steps are 

restricted to being to nearest  neighbors only exact solutions of  the resulting 
problem can be given. However ,  the structure of  these solutions is quite 
difficult to analyze,  and none of  the investigators who have studied t rapping 
problems in one dimension ( l - D )  have gone much beyond verifying the 
asymptot ic  results for the probabi l i ty  of  survival after n steps. In this note we 
study several problems for which, hopefully,  the solution in 1-D will suggest 
general izat ions in higher dimensions.  
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The first of these is important in the evaluation of simulated results. It 
is known from the work of Donsker and Varadhan ~1) that the averaged 
survival of an n step walk is asymptotically proportional to exp(-an D/tD+ 21) 
in D dimensions where a is a constant that depends on trap concentration. 
How large n must be for this asymptotic form to be valid is unanswered by 
Donsker and Varadhan's analysis. We will calculate a first correction term 
in 1-D to shed light on this problem. A second question that has not 
attracted much attention t9) is that of the short-time behavior of the average 
survival fraction. Klafter, Zumofen, and Blumen suggest that (in l-D) this 
should be of the form exp(-fln 1/2) and we show that this is indeed correct, 
and furnish a value for ft. A third problem that lends itself to our analysis is 
that of the effect of allowing attraction or repulsion between traps, so that 
the distribution of spacing between adjacent traps differs from that implied 
by pure random placement. We will show that restricting the occurrence of 
large gaps between adjacent traps will change the asymptotic form of the 
survival fraction. This confirms the general argument given by several 
authors tl~ that the large intertrap spacing governs the qualitatively 
important features of the asymptotic survival fraction. Finally, we will 
calculate the averaged mean-square displacement of a random walker which 
has survived n steps without being trapped. It will be shown that for the 
strictly random placement of traps (i.e., each lattice point a trap with 
probability e), this quantity goes like n z/3 rather than the first power of n 
expected for the unrestricted random walk. 

Our first result will be that for the averaged survival probability for a 
symmetric lattice random walk in 1-D with steps to nearest neighbors only. 
Let us first consider an interval (0, l) for which the end points 0 and l, 
respectively, are traps and there are no traps interior to the interval. Feller ~12~ 
has shown that the probability that a random walker is at r in the interval, 
given that it started at r o, is 

2 1 
Pn(rlro)=~-j~_aCOSn ( l )  sin(-~)sin(~J~ff~ (1) 

On the assumption that the starting points, r 0, are uniformly distributed over 
(1, I -  1) one finds for the survival probability after n steps 

l 1 - 1  1 - 1  

Fn([) - I -  1 ~ ~ p.(r ] ro) 
r--l= ro= 1 

-- l ( l-  1) ~ cosn cote 
j=o l 2l 

(2) 
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where the square brackets denote "the largest integer contained in." This, by 
itself, is not an interesting result, but its average over all intertrap intervals 
is. Let us suppose that the probability that an arbitrary intertrap interval is 
equal to l is qt, l =  1, 2,.... For example, for strictly random trap placement 
qt = c ( 1 -  c) l-a, where c is the probability that a given site is a trap. The 
correct set of probability to be used in the averaging process is not the q~ but 
the length-biased estimate, (~3) Pt, defined by 

Pt = lqt qj, l = 1, 2,... (3) 
. =  

so that, for example, for random traps pl=e21(1 _r The intuitive 
reason for using Pt rather than qt is that the random walker is more likely to 
have its starting point on a large trap-free interval than on a small one. Thus, 
for the strictly random trap one finds that 

~" j=0 I 2l 

(4) 
which may be regarded as a power series in 1 - e .  This equation is 
convenient for computation when e is close to 1. To lowest order in 1 - e  
when c ~ 1 and n > O, (F.)  can be written 

(F , )  = 3e2(1 - c)2(1/2)" + O((1 - e) 3) (5) 

When c is close to zero we can examine the analytic behavior of (Fn) by 
observing that the divergence of (F , )  at e = 0 is governed by the behavior of 
the coefficient of the term c2(1 - c )  l - 1  in Eq. (4): 

~. c o s "  cot 2 (6) 
al(n)=l 1 j=o l 2l 

in the large-/limit. To find this behavior we have the estimates 

cos. [ n(2J + 1) nTr2(2j + 1) 2 ] 
l j ~ e x p  i 2l 2 

[ 7r(2j+ 1) ] 4l 2 1 
cot2 2l rC 2 (2j + 1) 2 

which implies that 

812 m 
a,(n) ~ - ~ -  j--~o'= exp [--nzrZ(2J(2J + +1) 21)2/(212)] 

(7) 

(8) 
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This expression for at(n ) , together with an easily justified interchange of 
orders of summation, allows us to write the following approximation for 
(F.):  

, [ (f,,) ~ @ I(1 -- c) t-I exp 
j=o (2 j+  1) 2 a=a 

= 7r--5-j=o (2 j+  1): U ~z2(2j+ 1) 2 

n~2(2J21 z+ 1) 2 ] 

(9) 

in which U(m) is the infinite sum 

lexp( ) 
l = l  

(lO) 

The asymptotic behavior of (F , )  can be obtained if we can evaluate the sum 
U(m) for large m. This can be done by using the method of steepest descents 
modified for sums, or more succinctly by converting the sum to an integral 
with the Euler-Maclaurin formula. In this way we find that 

-co 

U(m) ~ )o xe-Ax-m/x2 dx 

= (m/)Q2/3 f /  v exp [-(mJ])t/3 (v + ~f) l dv (11) 

in which 2 = I n [ i / ( 1 - c ) ] .  The steepest descents approximation to the 
integral yields 

rn 1/2 exp[-(m22) 1/3 ] (12) U(m) T 

which is to be substituted into Eq. (9). Since we are interested in large n the 
main contribution to the sum will come from the j = 0 term. In this way we 
find the approximation 

~ 8 c 2  ( - ~ )  ~ 16c2 n 1/2 - -  (13) (F,)  ~ 7 - U  ~ ( ~ - )  exp [--(7r2~ ~'2) ~/31 

The exponent is in agreement with that calculated by Donsker and 
Varadhan. (1) A rough idea of the value of n required for Eq. (13) to be a 
useful approximation can be obtained by calculating a correction term to the 
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value of U(m). If we call Uo(m ) the approximation given in Eq. (12), then 
one can show using higher terms in the expansion of Eq. (11) that 

[ ( 1 ) ]  
U(m) = Uo(m ) 1 + O (m25),/3 (14) 

which indicates that the number of steps required to effectively cause the 
correction term to be negligible can be rather large. For example, when 
c = 0.1 the correction term is 0.26 for n = 103, 0.12 for n = 104, and 0.06 for 
n = 10 ~. The correction terms increase in absolute magnitude as the trap 
concentration decreases. The n 1/3 dependence of the correction term has 
been checked against accurate numerical calculations reported in Ref. 8, and 
found to be in agreement with them. These results ar~ relevant to simulation 
studies in which one might want to study further properties of the asymptotic 
regime. It is tempting to conjecture that in D > 1 dimensions the correction 
term to the Donsker-Varadhan result is O((m).2) -D/(D+2)) but our present 
calculations can only suggest but not verify this result. 

A calculation of the transient behavior of (F,} for c-+ 0 and moderate n 
starts by expanding the exponential appearing in the definition of U(m) in 
Eq. (10), 

U(m)~ ,...,~ /(1--C) l-1 1--- '~  
/ = l  

1 m 1 
- l n - -  

c 2 1 - c  c 

1 [ (15) me 2 In(l/c) ] 
c- Y exp [ i Z c ] 

This, in turn implies the approximation 

8 ~176 1 [ 
(Fn} "" ~ "j~=o ( 2 J  q- 1) 2 exp 

~2nc3 In(l/c) ] 
2(1 -- c) (2j + 1) 2 (16) 

Therefore, in the indicated limit we must find the behavior of the function 

8 oo 1 
h(r/) =7~-j_~ 0 (2 j+  1) 2 exp[-r/(2j + 1) 2] (17) 

in the limit r /=  0. It is evident that h ( 0 ) =  1. On differentiating this last 
formula with respect to t /we find 

8 ~ exp[--r/(Zj + 1) 2] (18) h ' ( r / )  = - ~r-7 .=o  
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The small r/form can be obtained either exactly by using a Poisson transfor- 
mation, or to lowest order using the Euler-Maclaurin sum formula. The 
latter gives 

4 f :  2 (19) h'(~l) ~ - 7 e -"x2 N X  - -  (7~2~])1/2 

so that 

l -- .-~ (20) 

which yields, as the short-time low concentration limiting form for (Fn) 

( F . ) ~ e x p l _ e [  ln(1/e)n 1/2( 
I 2 - ~  -----C-) ] (21) 

in which the exponent is proportional to nl/2. 
As we have noted, when traps are randomly assigned to lattice points 

with a concentration equal to c then the probability that l lattice points 
separate two adjacent traps is q t = e ( 1 - e )  t 1, l =  1,2,.... Let us now 
suppose that an effective attraction between traps is introduced so that the 
probability that really large gaps occur is decreased. One way the attraction 
can be introduced is to choose 

ql = e-~t2 e _~j2, l = 2, 3,... (22) 
j= 

for which the effective concentration is 

e= ~ e-~t2/ le-~12= 1/(1) (23) 
1 = 2  [1=2 

The exact formula for the survival function is, from Eq. (2), 

(F,)  = a,(n)e -~t2 e -~12 (24) 
/ = 2  = 

where the expression for at(n ) is that shown in Eq. (6). From this one finds 
that in the small e limit 

V - (25) 
j=0 (2j + 1) 2 
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where, now, 

,exp ( m)/ 
,:2 - 7  I,=~ 

(26) 

Remembering now that we are working in the small c range we can convert 
the summations to integrations using the Euler-Maclaurin formula, finding 
that 

V(m)~ f :  xe-(e'x2+m/X2) dx/~: 

= 2(mfl) 1/z Kl(2(mfl) u2) 

xe-~X2 dx 
(27) 

where K~(v) is a Bessel function of the second kind of imaginary argument. 
Using the known asymptotic forms of such Bessel functions we have as the 
large-n approximation for (F,) ,  

(F.) ~ ~ V ~ - -  exp[--n(2nfl) 1/2] (28) 
7~ 

in terms of the parameter ft. At low trap concentrations one can solve 
Eq. (24) for fl in terms of c. To lowest order in c one has 

fl ~ (e/z02 (29) 

from which it follows that the large-n form for (Fn) is 

{ nc2 ~ 1/4 exp[-c(2n)~/2] (30) (F . )  ~ 8 \2zr 2 ] 

which differs from the purely random trap case. Of course this is to be 
expected since the longest survivals are for those random walkers who 
initially find themselves in the largest trap-free intervals. This property is 
expected to persist in D > 1 dimensions when similar attraction between 
trapping sites is introduced. (l~ It would be interesting to develop the 
analog of the Donsker-Varadhan analysis for such cases. 

As our final calculation for D = 1 we calculate the asymptotic form of 
the mean-squared displacement of a random walker in the presence of traps. 
It is most convenient to make this calculation for the case of a diffusing 
particle, although one can also evaluate the requisite sums for the lattice case 
with somewhat more complicated-looking final formulas. However, the 
diffusion limit can be shown to be equivalent to the very low trap concen- 
tration limit, so that we choose the most convenient framework for the 
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calculation to follow. The probability density for the position of a particle 
diffusing between two traps at 0 and L is 

p(x, tlxo,O)=~-.= exp - ~-s ] s i n  sin (31) 

where D is now a diffusion constant. In order to have results comparable to 
the random walk in discrete time we must replace Dt appearing in the 
exponent of this last equation by n/2, where n is the number of (discrete) 
steps. The mean-squared displacement at time t for all random walkers in a 
trap-free interval equal to L is defined by 

1 L L 

(r2( t ){L)- - -~  ~ exof I ex(x-xo)2p(x,t]xo,O) (32) 

For large Dt/L 2 we need only retain the j = 1 term in Eq. (31) to find the 
appropriate expression for (r2(t) I L). This procedure yields 

(1 5) exp 
This must be averaged over the appropriate density for L, which in the 
present case is 

g(L) = (L/L 2) exp(--L/L) (34) 

where L is a function of c to be specified below. The asymptotic survival 
function is 

8 ( [ 7r2Dt~ 
(F(t)) ~ - - ~ / j o  L exp ~ -  ~ - -  ~ ]  dL (35) 

We see that can be put exactly in the form of (Fn) in Eq. (13) provided that 
we replace Dt by n/2 and set 

L = l / ) l ' = l / l n ( ~ - - c )  ~--cl (36) 

Furthermore the value of (r2(t) lL) averaged over configurations and 
expressed in terms of n is 

4 l(Tr2nj,2~4/3(mv3ex p _~7)]d v 

(37) 
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Consequently the mean-squared displacement of  those random walkers that 
survive to n steps for n large is 

(rg(n))  2 -1/ '  1 - ~ -  (38) 
( F . )  \ 22 ] 

i.e., it is proportional to n 2/3 rather than to the first power of  n as would be 
the case for the unrestricted random walk. That this should be the case is 
intuitively reasonable since only those random walks which do not make too 
large excursions from their starting point will survive. For the model with 
attracting traps specified by Eq. (22) the comparable power of  n is 1/2 rather 
than 2/3. In D dimensions we conjecture that the comparable n dependence 
iS F/(D+ 1)/(D+2) 

When the transition probabilities of  the random walk are asymmetric 
the survival probabilities decay exponentially because the expected number 
of  distinct sites visited is asymptotically proportional to n. It would be of  
great value to be able to solve the 1-D problem with longer-range jumps to 
ascertain the effects of  long-range jumps on the approach to the asymptotic 
decay form of the survival probability. Even in the very simplest of  cases this 
seems beyond the reach of  present analytical methods. 
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